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Abstract: We consider a D7-brane probe of AdS5 × S5 in the presence of pure gauge B-

field. The dual gauge theory is flavored Yang-Mills theory in external magnetic field. We

explore the dependence of the fermionic condensate on the bare quark mass mq and study

the discrete self-similar behavior of the theory near the origin of the parametric space. We

calculate the critical exponents of the bare quark mass and the fermionic condensate. A

study of the meson spectrum supports the expectation based on thermodynamic consid-

erations that at zero bare quark mass the stable phase of the theory is a chiral symmetry

breaking one. Our study reveals the self-similar structure of the spectrum near the criti-

cal phase of the theory, characterized by zero fermionic condensate and we calculate the

corresponding critical exponent of the meson spectrum.
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1. Introduction

The existence of gauge/sting dualities has been anticipated from the very beginning of

these fields, based on the striking similarity between the large N t’Hooft limit and the

genus expansion in string theory. Further insights were revealed with the discovery of

D-branes, their description in terms of DBI action and identification as sources of the

known p-brane solutions in super gravity. However it was not until Maldacena conjectured

his decoupling limit when significant progress was made and the AdS/CFT correspondence

emerged [1] as a manifestation of the gauge/string duality providing holographic description

of super gravity on AdS5×S5 space in terms of N=4 SUSY Yang-Mills theory living at the

asymptotic boundary. The observed correspondence was conjectured to hold for the full

string theory on any asymptotically AdS5 × S5 background. One of the most remarkable

features of the correspondence is that it is a strong-weak correspondence and that it can

give us tools to explore the strongly coupled regimes of the Yang-Mills theory.

In recent years progress has been made towards the study of matter in fundamental

representation in the context of AdS/CFT correspondence. One way to achieve this is by

introducing space filling flavor D7-branes in the probe limit [2] and in order to keep the

probe limit valid the condition Nf ≪ Nc is imposed. The fundamental strings stretched

between the stack of Nc D3 branes and the flavor Nf D7-branes give rise to N=2 hyper-

multiplet, the separation of the D3 and D7 branes in the transverse directions corresponds
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to the mass of the hypermultiplet, the classical shape of the D7-brane encodes the value

of the fermionic condensate and its quantum fluctuations describe the light meson spec-

trum of the theory [3]. This technique for introducing fundamental matter has been widely

employed in different backgrounds. Of particular interest was the study of non supersym-

metric backgrounds and phenomena such as spontaneous chiral symmetry breaking. These

phenomena were first studied in this context in [4], where the authors developed an appro-

priate numerical technique. In recent years this approach received further development,

and has proven itself as powerful tool for the exploration of confining gauge theories, in

particular, for the description of their thermodynamic properties or for the building of

phenomenological models relevant to QCD [6]–[49].

The paper is organized as follows:

In the second section we review the method of introducing magnetic field to the the-

ory, employed in [9]. We describe the basic properties of the D7 brane embedding and the

thermodynamic properties of the dual gauge theory, in particular the dependence of the

fermionic condensate on the bare quark mass. We describe the spontaneous chiral symme-

try breaking caused by the external magnetic field and comment on the spiral structure in

the condensate vs. bare quark mass diagram.

The third section contains our main results and splits into two parts:

The first part is dedicated to the detailed study of the spiral structure described in [9].

We perform analysis similar to the one considered in [5] for the study of merger transitions

and calculate the critical exponents of the bare quark mass and the fermionic condensate.

We also describe the discrete self-similarity of the spiral and calculate the scaling factor

characterizing it.

In the second part of this section we consider the meson spectrum of the states corre-

sponding to the spiral. First we study the critical embedding corresponding to the center

of the spiral and reveal an infinite tower of tachyonic states organized in a decreasing geo-

metrical series. Next we consider the dependence of the meson spectrum on the bare quark

mass and confirm the expectations based on thermodynamic considerations that only the

lowest branch of the spiral is stable. We observe that at each turn of the spiral there is

one new tachyonic state. We comment on the self-similar structure of the spectrum and

calculate the critical exponent of the meson mass. We also consider the spectrum corre-

sponding to the lowest branch of the spiral and for a large bare quark mass reproduce the

result for pure N = 2 Supersymmetric Yang Mills Theory obtained in [3].

We end with a short discussion of our results and the possible directions of future

study.

2. Fundamental matter in external magnetic field

In this section we briefly review the method of introducing external magnetic field to the

theory considered in [9] and the basic properties of the D7-brane probe in this background.

We also review the properties of the corresponding dual theory and the effect that the

external magnetic field has on it.
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2.1 Basic Configuration

Let us consider the AdS5 × S5 geometry describing the near horizon geometry of a stack

of Nc extremal D3-branes.

ds2 =
u2

R2
(−dx2

0 + d~x2) +R2du
2

u2
+R2dΩ2

5, (2.1)

gsC(4) =
u4

R4
dx0 ∧ dx1 ∧ dx2 ∧ dx3,

eΦ = gs,

R4 = 4πgsNcα
′2 .

In order to introduce fundamental matter we first rewrite the metric in the following

form:

ds2 =
ρ2 + L2

R2
[−dx2

0 + dx2
1 + dx2

2 + dx2
3] +

R2

ρ2 + L2
[dρ2 + ρ2dΩ2

3 + dL2 + L2dφ2],

dΩ2
3 = dψ2 + cos2 ψdβ2 + sin2 ψdγ2, (2.2)

where ρ, ψ, β, γ and L, φ are polar coordinates in the transverse R4 and R2 respectively,

satisfying: u2 = ρ2 +L2. Next we use x0,1,2,3, ρ, ψ, β, γ to parametrise the world volume of

the D7-brane and consider the following ansatz [2] for it’s embedding:

φ ≡ const, (2.3)

L ≡ L(ρ) .

Leading to the following form of the induced metric:

ds̃ =
ρ2 + L(ρ)2

R2
[−dx2

0 + dx2
1 + dx2

2 + dx2
3] +

R2

ρ2 + L(ρ)2
[(1 + L′(ρ)2)dρ2 + ρ2dΩ2

3] . (2.4)

Now let us consider the NS part of the general DBI action:

SDBI = −µ7

gs

∫

M8

d8ξdet1/2(P [Gab +Bab] + 2πα′Fab) . (2.5)

Here µ7 = [(2π)7)α′4]−1 is the D7-brane tension, P [Gab] and P [Bab] are the induced

metric and B-field on the D7-brane’s world volume, while Fab is its gauge field. A simple

way to introduce magnetic field would be to consider pure gauge B-field along the ”flat”

directions of the geometry x0 − x3 corresponding to the D3-branes world volume:

B(2) = Hdx2 ∧ dx3 . (2.6)

The constant H is proportional to the magnetic component of the EM field. Note that

since the B-field is a pure gauge dB = 0 the corresponding background is still a solution

to the supergravity equations. On the other side the gauge field Fab comes in next order

in α′ expansion compared to the metric and the B-field components. Therefore to study
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the classical embedding of the D-brane one can leave only the Gab +Bab part of the DBI-

action. It was argued in [9] that one can consistently satisfy the constraints imposed on the

classical embedding resulting from integrating out Fab. The resulting effective lagrangian

is:

L = −µ7

gs
ρ3 sinψ cosψ

√

1 + L′2

√

1 +
R4H2

(ρ2 + L2)2
. (2.7)

The equation of motion for the profile L0(ρ) of the D7-brane is given by:

∂ρ

(

ρ3 L′
0

√

1 + L′2
0

√

1 +
R4H2

(ρ2 + L2
0)

2

)

+

√

1 + L′2
0

√

1 + R4h2

(ρ2+L2
0
)2

2ρ3L0R
4H2

(ρ2 + L2
0)

3
= 0 . (2.8)

As expected for large (L2
0 +ρ2) → ∞ or H → 0, we get the equation for the pure AdS5×S5

background [2]:

∂ρ

(

ρ3 L′
0

√

1 + L′2
0

)

= 0 .

Therefore the solutions to equation (2.8) have the following behavior at infinity:

L0(ρ) = m+
c

ρ2
+ . . . , (2.9)

where the parameters m (the asymptotic separation of the D7- and D3- branes) and c (the

degree of bending of the D7-brane) are related to the bare quark mass mq = m/2πα′ and

the fermionic condensate 〈ψ̄ψ〉 ∝ −c respectively [6]. We have provided derivation of these

relations in appendix A. As we shall see below, the presence of the external magnetic field

and its effect on the dual SYM provide a non vanishing value for the fermionic condensate,

furthermore the theory exhibits chiral symmetry breaking.

Now notice that H enters in (2.7) only through the combination H2R4. The other

natural scale is the asymptotic separation m. It turns out that different physical config-

urations can be studied in terms of the ratio m̃2 = m2/(HR2): Once the m̃ dependence

of our solutions are known, the m and H dependence follows. Indeed let us introduce

dimensionless variables via:

ρ = R
√
Hρ̃ , L0 = R

√
HL̃ , L′

0(ρ) = L̃′(ρ̃) . (2.10)

The equation of motion (2.8) then takes the form:

∂ρ̃

(

ρ̃3 L̃′
√

1 + L̃′2

√

1 +
1

(ρ̃2 + L̃2)2

)

+

√

1 + L̃′2
√

1 + 1
(ρ̃2+L̃2)2

2ρ̃3L̃

(ρ̃2 + L̃2)3
= 0 . (2.11)

The solutions for L̃(ρ̃) can be expanded again to:

L̃(ρ̃) = m̃+
c̃

ρ̃2
+ . . . , (2.12)

and using the transformation (2.10) we can get:

c = c̃R3H3/2 . (2.13)

– 4 –



J
H
E
P
0
4
(
2
0
0
8
)
0
8
8

1 2 3 4 5
m
!

"0.1

"0.2

"0.3

"c
!

!m
!

"

-c
"

cr

Figure 1: The black line corresponds to (2.15), one can observe that the analytic result is valid

for large m̃. It is also evident that for m̃ = 0 〈ψ̄ψ〉 6= 0. The corresponding value of the condensate

is c̃cr = 0.226.

2.2 Properties of the solution

The properties of the solution have been explored in [9], both numerically and analytically,

when possible. Let us briefly review the main results.

For weak magnetic field H and non-zero bare quark mass m it was shown that the

theory develops a fermionic condensate:

〈ψ̄ψ〉 ∝ −c = −R4

4m
H2 , (2.14)

or using dimensionless variables:

c̃ =
1

4m̃
. (2.15)

The case of strong magnetic field H can be explored by numerically solving equa-

tion (2.11), it is convenient to use initial conditions in the IR as has been recently discussed

in the literature [7, 8]. We used the boundary condition L̃′(ρ̃)|ρ̃=0 = 0. We used shooting

techniques to generate the embedding of the D7 for a wide range of m̃. Having done so

we expanded numerically the solutions for L̃(ρ̃) as in equation (2.12) and generated the

points in the (m̃,−c̃) plane corresponding to the solutions. The resulting plot is presented

in figure 1.

As one can see there is a non zero fermionic condensate for zero bare quark mass and

hence there is a Spontaneous Breaking of the Chiral Symmetry. The corresponding value

of the condensate is c̃cr = 0.226. It is also evident that the analytical expression for the

condensate (2.15) that we got in the previous section is valid for large m̃, as expected. Now

using equation (2.13) we can deduce the dependence of ccr on H:

ccr = c̃crR
3H3/2 = 0.226R3H3/2 . (2.16)
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Another interesting feature of our phase diagram is the spiral behavior near the origin

of the (m̃,−c̃)-plane which can be seen in figure 3. Note that the spiral presented in this

figure has two arms, we have used the fact that any two points in the (m̃,−c̃) plane related

by reflection with respect to the origin describe the same physical state. A similar spiraling

feature has been observed in ref. [8], where the authors have argued that only the lowest

branch of the spiral corresponding to positive values of m is the stable one (corresponding

to the lowest energy state). The spiral behavior near the origin signals instability of the

embedding corresponding to L0 ≡ 0. If we trace the curve of the diagram in figure 3

starting from large m, as we go to smaller values of m we will reach zero bare quark

mass for some large negative value of the fermionic condensate ccr. Now if we continue

tracing along the diagram one can verify numerically that all other points correspond to

embeddings of the D7-brane which intersect the origin of the transferse plane at least once.

After further study of the right arm of the spiral, one finds that the part of the diagram

corresponding to negative values of m̃ represents solutions for the D7-brane embedding

which intersect the origin of the transverse plane odd number of times, while the positive

part of the spiral represents solutions which intersect the origin of the transverse plane

even number of times. The lowest positive branch corresponds to solutions which don’t

intersect the origin of the transverse plane and is the stable one, while the upper branches

have correspondingly 2, 4, etc., intersection points and are ruled out after evaluation of the

free energy. Indeed let us explore the stability of the spiral by calculating the regularized

free energy of the system. We identify the free energy of the dual gauge theory [46, 47]

with the wick rotated and regularized on-shell action of the D7-brane:

F = 2π2NfTD7R
4H2ĨD7 , (2.17)

ĨD7 =

ρ̃max
∫

0

dρ̃

(

ρ̃3

√

1 +
1

(ρ̃2 + L̃2)

√

1 + L̃′2 − ρ̃
√

ρ̃4 + 1

)

(2.18)

The second term under the sign of the intergal in (2.18), corresponds to the subtracted

free energy of the L̃(ρ̃) ≡ 0 embedding and serves as a regulator. Now we can evaluate

numerically the integral in (2.18) for the first several branches of the spiral. The corre-

sponding plot is presented in figure 2. Note that we have plotted ĨD7 versus |m̃|, since the

bare quark mass depends only on the absolute value of the parameter m̃. The lowest curve

on the plot corresponds to the lowest positive branch of the spiral, as one can see it has

the lowest energy and thus corresponds to the stable phase of the theory.

In the next section we will provide more detailed analysis of the spiral structure from

figure 3 and explore the discrete self-similarity associated to it.

3. Criticality and spontaneous chiral symmetry breaking

3.1 The spiral revisited

In the following section we analyze the spiral structure described in [9]. The technique that

we employ is similar to the one used in [5] and [28] , where the authors studied merger

transitions in brane-black-hole systems.
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Figure 2: The lowest lying curve correspond to the positive m̃ part of the lowest branch of the

spiral, suggesting that this is the stable phase of the theory.

-c�cr H0

H1

H2
-0.5 0.5

m�

-0.2

-0.1

0.1

0.2

-c�Hm� L

Figure 3: A magnification of figure 1 to show the spiral behavior near the origin of the (−c̃, m̃)-

plane. We have added the second (left) arm of the spiral representing the (m̃,−c̃) → (−m̃, c̃)
symmetry of the diagram.

Let us explore the asymptotic form of the equation of motion of the D7-brane

probe (2.11) in the near horizon limit ρ̃2 + L̃2 → 0. To this end we change coordinates to:

ρ̃→ λρ̂; L̃→ λL̂; (3.1)

and consider the limit λ→ 0. The resulting equation of motion is:

∂ρ̂(
ρ̂3

ρ̂2 + L̂2

L̂′
√

1 + L̂′2
) + 2

√

1 + L̂′2 ρ̂3L̂

(ρ̂2 + L̂2)2
= 0 . (3.2)

Equation (3.2) enjoys the scaling symmetry:

ρ̂→ µρ̂; L̂→ µL̂; . (3.3)
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In the sense that if L̂ = f(ρ̂) is a solution to the E.O.M. then 1
µf(µρ̂) is also a solution.

Next we focus on the region of the parametric space, close to the trivial L ≡ 0 embedding,

by considering the expansion:

L̂ = 0 + (2πα′)χ̂ (3.4)

and linearizing the E.O.M. . The resulting equation of motion is:

ρ̂∂ρ̂(ρ̂∂ρ̂χ̂) + 2χ̂ = 0 (3.5)

and has the solution:

χ̂ = A cos(
√

2 ln ρ̂) +B sin(
√

2 ln ρ̂) . (3.6)

Now under the scaling symmetry ρ̂ → µρ̂ the constants of integration A and B transform

as:
(

A

B

)

→ 1

µ

(

cos
√

2 lnµ sin
√

2 lnµ

− sin
√

2 lnµ cos
√

2 lnµ

)(

A

B

)

. (3.7)

The above transformaton defines a class of solutions represented by a logarithmic spiral in

the parametric space (A,B) generated by some (Ain, Bin), the fact that we have a discrete

symmetry χ→ −χ suggests that (−Ain,−Bin) is also a solution and therefore the curve of

solutions in the parametric space is a double spiral symmetric with respect to the origin.

Actually as we are going to show there is a linear map from the parametric space (A,B)

to the plane (m̃,−c̃) which explains the spiral structure, a subject of our study. To show

this let us consider the linearized E.O.M. before taking the λ→ 0 limit:

ρ̃
√

1 + ρ̃4∂ρ̃(ρ̃
√

1 + ρ̃4∂ρ̃χ̃) + 2χ̃ = 0; χ̃ = λχ̂; , (3.8)

with the solution:

χ̃ = Ã cos
√

2 ln
ρ̃

√

1 +
√

1 + ρ̃4

+ B̃ sin
√

2 ln
ρ̃

√

1 +
√

1 + ρ̃4

. (3.9)

Expanding at infinity:

χ̃ = m̃+
c̃

ρ̃2
+ · · · = Ã− B̃√

2

1

ρ̃2
+ . . . , (3.10)

we get:
(

m̃

c̃

)

=

(

Ã

−B̃/
√

2

)

. (3.11)

Now if we match our solution (3.9) with the solution in the ρ̃ → 0 limit (3.6) we should

identify (Ã, B̃) with the parameters (A,B). Combining the rescaling property of (A,B)

with the linear map to (m̃,−c̃) we get that the embeddings close to the trivial embedding

L ≡ 0 are represented in the (m̃,−c̃) plane by a double spiral defined via the transformation:

(

m̃

c̃

)

→ 1

µ

(

cos
√

2 lnµ −
√

2 sin
√

2 lnµ
1√
2

sin
√

2 lnµ cos
√

2 lnµ

)(

m̃

c̃

)

. (3.12)
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Note that the spiral is double, because we have the symmetry (m̃,−c̃) → (−m̃, c̃). This

implies that in order to have similar configurations at scales µ1 and µ2 we should have:

cos
√

2 lnµ1 = ± cos
√

2 lnµ2 (3.13)

and hence: √
2 ln

µ2

µ1
= −nπ, (3.14)

which is equivalent to:
µ2

µ1
= e−nπ/

√
2 = qn . (3.15)

Therefore we obtain that the discrete self-similarity is described by a rescaling by a factor

of:

q = e−π/
√

2 ≈ 0.10845 . (3.16)

This number will appear in the next subsection where we will study the meson spectrum.

As one may expect the meson spectrum also has a self-similar structure.

It is interesting to confirm numerically the self-similar structure of the spiral and to

calculate the critical exponents of the bare quark mass and the fermionic condensate. It

is convenient to use the separation of the D3 and D7 branes at ρ̃ = 0, L̃in = L̃(0) as an

order parameter. There is a discrete set of initial separations Lin, corresponding to the

points H0,H1,H2, . . . in figure 3 , for which the corresponding D7 brane’s embeddings

asymptote to m̃ = L̃∞ = 0 as ρ̃→ ∞. The trivial L̃ ≡ 0 embedding has L̃in = 0 and is the

only one which has a zero fermionic condensate (c̃ = 0), the rest of the states have a non

zero c̃ and hence a chiral symmetry is spontaneously broken. Each such point determines

separate branch of the spiral where c̃ = c̃(m̃) is a single valued function. On the other side

each such branch has both positive m̃ and negative m̃ parts. The symmetry of the double

spiral from figure 3, suggests that the states with negative m̃ are equivalent to positive

m̃ states but with an opposite sign of c̃. This implies that the positive and negative m̃

parts of each branch correspond to two different phases of the theory, with opposite signs

of the condensate. As we can see from figure 2 the lowest positive branch of the spiral has

the lowest free energy and thus corresponds to the stable phase of the theory. In the next

subsection we will analyze the stability of the spiral further by studying the light meson

spectrum of the theory near the critical L̃ ≡ 0 embedding.

Here we are going to show that both the bare quark mass m̃ and the fermionic con-

densate c̃ have critical exponent one, as L̃in → 0. Indeed let us consider the scaling

property (3.7), (3.12). If we start from some L̃0
in and transform to L̃in = 1

µ L̃
0
in, we can

solve for µ and using equation (3.12) we can verify that the bare quark mass and the

fermionic condensate approach zero linearly as L̃in → 0. To verify numerically our analysis

we generated plots of m̃/L̃in vs.
√

2 log L̃in/2π and c̃/L̃in vs.
√

2 log L̃in/2π presented in

figure 4.

The red curves in these figures represent a fit with trigonometric functions of a unit

period, as one can see the fit is very good as L̃in → 0. On the other side for large L̃in we

obtain the results for a pure AdS5 × S5 space, namely L̃ = const, c̃ = 0. It is also evident

from the plots that the critical exponents of m̃ and c̃ are equal to one.

– 9 –
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Figure 4: The red curves represent fit with trigonometric functions of unit period. For small

L̃in the fit is very good, while for large L̃in we get the results for pure AdS5 × S5 space, namely

L̃ = const, c̃ = 0. The plots also verify that the critical exponents of m̃ and c̃ are equal to one.

3.2 The meson spectrum

In this section we will explore the light meson spectrum of the theory corresponding to

quadratic fluctuations of the D7 brane embedding. In particular we will consider the

spectrum corresponding to the fluctuations of L̃. The equations of motion of the fluctuation

modes were derived in [9] and it was shown that the vector and the scalar spectrum mix

due to the non-zero magnetic field. Some interesting effects such as Zeeman splitting of

the states and a characteristic
√
m dependence of the meson spectrum have been reported.

However the analysis performed in [9] is only for the fluctuations along φ, for the lowest

positive branch of the spiral from figure 3 (the one corresponding to pointH0). In this letter

we extend the analysis of the spectrum to all branches of the spiral (points H1,H2, . . . in

figure 3) and show that the ground states of all inner branches of the spiral are tachyonic,

proving that the phases described by these branches of the spiral are unstable as opposed to

metastable. Our analysis reveals the self-similar structure of the spectrum and we obtain
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the critical exponents of the tachyonic spectrum as one approaches the critical L̃ ≡ 0

embedding. The section is organized as follows:

First we study the spectrum of the L̃ ≡ 0 embedding in the spirit of the analysis

provided in [42]. We perform both a numerical and analytical study and show that the

spectrum contains infinitely many tachyonic states approaching zero in a decreasing geo-

metrical series, representing the self-similar structure of the meson spectrum.

Next we study the spectrum as a function of the bare quark mass and show that at

each turn of the spiral one of the energy levels become tachyonic. Similar behavior has

been recently reported in [44]. We show that as we approach the critical L̃ ≡ 0 embedding

the spectrum becomes tachyonic and the corresponding critical exponent is two. We also

present plots showing the spiraling of the spectrum as one approaches criticality.

Finally we provide an analysis of the spectrum of the stable branch of the spiral and

comment on the small m̃ behavior of the spectrum as a consistent with the spontaneous

chiral symmetry breaking scenario.

3.2.1 The critical L̃ ≡ 0 embedding

In this section we study the L̃ ≡ 0 embedding and in particular the spectrum of the

fluctuations along the L̃ coordinate. Let us go back to dimensionfull coordinates and

consider the following change of coordinates in the transverse R6 space:

ρ = u cos θ , (3.17)

L = u sin θ .

In these coordinates the trivial embedding corresponds to θ ≡ 0 and in order to study the

quadratic fluctuations we perform the expansion:

θ = 0 + (2πα′)δθ(t, u) , (3.18)

δθ = e−iΩth(u) . (3.19)

Note that in order to study the mass spectrum we restrict the D7 brane to fluctuate

only in time. In a sense this corresponds to going to the rest frame. Note that due to the

presence of the magnetic field there is a coupling of the scalar spectrum to the vector one,

however for the fluctuations along θ the coupling depends on the momenta in the (x2, x3)

plane and this is why considering the rest frame is particularly convenient .

Our analysis follows closely the one considered in [42], where the authors have calcu-

lated the quasinormal modes of the D7-brane embedding in the AdS-black hole background

by imposing an in-going boundary condition at the horizon of the black hole. Our case is

the T → 0 limit and the horizon is extremal, however the θ ≡ 0 embedding can still have

quasinormal excitations with imaginary frequencies, corresponding to a real wave function

so that there is no flux of particles falling into the zero temperature horizon. The resulting

equation of motion is:

h′′ +

(

3

u
+

2u3

u4 +R4H2

)

h′ +

(

R4

u4
ω2 +

3

u2

)

h = 0 . (3.20)
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Figure 5: A plot of the effective potential V (z) given in equation (3.24).

It is convenient to introduce the following dimensionless quantities:

z =
R

u

√
H; ω =

ΩR√
H

; , (3.21)

and make the substitution [42]

h(z) = σ(z)f(z);
σ′(z)

σ(z)
=

1

2z
+

1

z(1 + z4)
; , (3.22)

leading to the equation for the new variable f(z):

f ′′(z) +
(

ω2 − V (z)
)

f(z) = 0 . (3.23)

Where the effective potential is equal to:

V (z) =
3

4z2

(1 + 3z4)(1 − z4)

(1 + z4)2
. (3.24)

The potential in (3.24) goes as 3
4z2 for z → 0 and as − 9

4z2 for z → ∞ and is presented in

figure 5. As it was discussed in [42] if the potential gets negative the imaginary part of

the frequency may become negative. Furthermore the shape of the potential suggests that

there might be bound states with a negative ω2. To obtain the spectrum we look for regular

solutions of (3.23) imposing an in-falling boundary condition at the horizon (z → ∞).

The asymptotic form of the equation of motion at z → ∞ is that of the harmonic

oscillator:

f ′′(z) + ω2f(z) = 0 , (3.25)

with the solutions e±iωz, the in-falling boundary condition implies that we should choose

the positive sign. In our case the corresponding spectrum turns out to be tachyonic and

hence the exponents are real. Therefore the in-falling boundary condition simply means

– 12 –



J
H
E
P
0
4
(
2
0
0
8
)
0
8
8

n ω
(n)
I ω

(n)
I /ω

(n−1)
I

0 2.6448 × 10−1 -

1 2.8902 × 10−2 0.10928

2 3.1348 × 10−3 0.10846

3 3.3995 × 10−4 0.10845

4 3.6865 × 10−5 0.10844

5 3.9967 × 10−6 0.10841

Table 1: Numerical data for the first six quasi-normal modes of the critical embedding. The data

suggests that as n→ ∞ the states organize in a decreasing geometrical series.

that we have selected the regular solution at the horizon: z → ∞. We look for a solution

of the form:

f(z) = e+iωzS(z) . (3.26)

The resulting equation of motion for S(z) is:

(−3 − 6z4 + 9z8)S(z) + 4z2(1 + z4)2
(

2iωS′(z) + S′′(z)
)

= 0 . (3.27)

Next we study numerically equation (3.27). After solving the asymptotic form of the

equation at the Horizon, we impose the following boundary condition at z = 1/ǫ, where ǫ

is a numerically small number typically ǫ = 10−9:

S(1/ǫ) = 1 − 9iǫ

8ω
; S′(1/ǫ) =

9iǫ2

8ω
; , (3.28)

after that we explore the solution for a wide range of ω = iωI . We look for regular solutions

which have |S(ǫ)| ≈ 0, this condition follows from the requirement that χ ∝ z3 as z → 0.

It turns out that regular solutions exist for a discrete set of positive ωI ≪ 1. The result

for the first six modes that we obtained is presented in table 1.

The data suggests that as ωI → 0 the states organize in a decreasing geometrical

series with a factor q ≈ 0.1084. Up to four significant digits, this is the number from

equation (3.16), which determines the period of the spiral. We can show this analytically.

To this end let us consider the rescaling of the variables in equation (3.27) given by:

z = λẑ; ω̂ = ω/λ; λ→ ∞; . (3.29)

This is leading to:

9Ŝ(ẑ) + 4ẑ2(2iω̂Ŝ′(ẑ) + Ŝ′′(ẑ)) +O(λ−4) = 0 . (3.30)

The solution consistent with the initial conditions at infinity (3.28) can be found to be:

Ŝ(ẑ) =
1 + i

2
e
−i π√

2 e−iẑω̂
√
πẑω̂H

(1)

i
√

2
(ẑω̂); ω̂ = iω̂I ; , (3.31)

where H
(1)

i
√

2
is the Hankel function of the first kind. Our next assumption is that in the

ωI → 0 limit, this asymptotic form of the equation describes well enough the spectrum.
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To quantize the spectrum we consider some ẑ0 = z0/λ≪ 1, where we have 1 ≪ z0 ≪ λ so

that the simplified form of equation (3.30) is applicable and impose:

Ŝ(ẑ0) = 0 . (3.32)

Using that ẑω̂ = izωI this boils down to:

H
(1)

i
√

2
(iωIz0) = 0 . (3.33)

Now using that ωIz0 ≪ 1 for a sufficiently small ωI , we can make the expansion:

H
(1)

i
√

2
(iωIz0) ≈ −A1

(

(ωIz0)
i
√

2 − (ωIz0)
−i

√
2
)

+ iA2

(

(ωIz0)
i
√

2 + (ωIz0)
−i

√
2
)

, (3.34)

where A1 and A2 are real numbers defined via:

A1 + iA2 = − 1

π
i(i/2)−i

√
2Γ(i

√
2) . (3.35)

This boils down to:

cos(
√

2 ln(ωIz0) + φ) = 0; φ ≡ π/2 − arg(A1 + iA2); . (3.36)

The first equation in (3.36) leads to:

ω
(n)
I =

1

z0
e
−π/2+φ√

2 e
−n π√

2 = ω
(0)
I qn , (3.37)

suggesting that:

q = e
− π√

2 ≈ 0.10845 . (3.38)

This is the number given in (3.16). Note that the value of z0 is a free parameter that we

can fix by matching equation (3.37) to the data in table 1. On the other side Ŝ(ẑ) given

in equation (3.31) depends only on ẑω̂ = iωIz and therefore once we have fixed z0 we are

left with a function of ωI , which zeroes determine the spectrum, equation (3.32). It is

interesting to compare it to the numerically obtained plot of |S(ǫ)| vs. ωI , that we have

used to determine the spectrum numerically. The result is presented in figure 6, where we

have used the n = 3 entry from table 1 to fix z0. One can see the good agreement between

the spectrum determined by equation (3.32), the red curve in figure 6 and the numerically

determined one, the dotted blue curve.

3.2.2 The spectrum near criticality

In this section we study the light meson spectrum of the states forming the spiral structure

in the (m̃,−c̃) plane, figure 3. In particular we focus on the study of the fluctuations along

L. The corresponding equation of motion was derived in [9]. The effect of the magnetic

field H is to mix the vector and the meson parts of the spectrum. However if we consider

the rest frame by allowing the fluctuations to depend only on the time direction of the D3

branes’ world volume, the equation of motion for the fluctuations along L decouple from

the vector spectrum. To this end we expand:

L = L0(ρ) + (2πα′)χ(ρ, t) , (3.39)

χ = h(ρ) cosMt .
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Figure 6: The dotted blue curve corresponds to the numerical solution of equation (3.27), while

the thick red curve is the one determined by equation (3.32). The plots are scaled to match along

the vertical axis.

Here L0(ρ) is the profile of the D7 brane’s classical embedding. The resulting equation of

motion for h(ρ) is:

∂ρ(g
h′

(1+L′2
0

)2
) +

(

g R4

(ρ2+L2
0
)2

M2

1+L′2
0

− ∂2g
∂L2

0

+ ∂ρ(
∂g

∂L0

L′
0

1+L′2
0

)
)

h = 0 , (3.40)

where g(ρ, L0, L
′
0) = ρ3

√

1 + L0
′2
√

1 + R4H2

(ρ2+L2
0
)2
.

It is convenient to introduce the dimensionless variables:

h̃ =
h

R
√
H

; L̃0 =
L0

R
√
H

; ρ̃ =
ρ

R
√
H

; M̃ =
MR√
H

; , (3.41)

leading to:

∂ρ̃

(

g̃
h̃′

(1+L̃′2
0 )2

)

+

(

g̃
1

(ρ̃2+L̃2
0)

2

M̃2

1 + L̃′2
0

− ∂2g̃

∂L̃2
0

+∂ρ̃

(

∂g̃

∂L̃0

L̃′
0

1+L̃′2
0

))

h̃ = 0 ,

with g̃(ρ̃, L̃0, L̃
′
0) = ρ̃3

√

1 + L̃′2
0

√

1 +
1

(ρ̃2 + L̃2
0)

2
. (3.42)

We study the normal modes of the D7 brane described by equation (3.42) by imposing

Neumann boundary conditions at ρ̃ = 0. Since our analysis is numerical we solve the

equation of motion (3.42) in terms of a power series for small ρ̃ and impose the appropriate

initial conditions for the numerical solution at ρ̃ = ǫ, where ǫ is some very small number.

In order to quantize the spectrum we look for numerical solutions which are normalizable

and go as 1/ρ̃2 at infinity.
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Let us study the dependence of the spectrum of M̃ on the bare quark mass m̃, for

the states corresponding to the spiral structure from figure 3. A plot of the spectrum of

the first three excited states is presented in figure 7. The classification of the states in

terms of the quantum number n is justified, because at large m̃ the equation of motion

for the fluctuations asymptotes to the equation of motion for the pure AdS5 × S5 space,

considered in [3], where the authors obtained the spectrum in a closed form. Note that the

diagram has a left-right symmetry. This is because we plotted the spectrum for both arms

of the spiral in order to emphasize its self-similar structure, physically only one side of the

diagram is sufficient.

Let us trace the blue curve corresponding to the n = 0 state starting from the right-

hand side. As m̃ decreases the mass of the meson decreases and at m̃ = 0 it has some

non-zero value. This part of the diagram corresponds to the lowest positive branch of the

spiral from figure 3 (the vicinity of point H0). It is satisfying to see that the lowest positive

m̃ branch of the spiral is tachyon free and therefore stable under quantum fluctuations.

Note that despite that the negative m̃ part of the lowest branch has no tachyonic modes

in its fluctuations along L, it has a higher free energy (as can be seen from figure 2) and is

thus at best metastable.

One can also see that the spectrum drops to a zero and becomes tachyonic exactly

at the point where we start exploring the upper branch of the spiral. This proves that

all inner branches correspond to true instability of the theory and cannot be reached by

super-cooling. As we go deeper into the spiral, the n = 0 spectrum remains tachyonic

and spirals to some critical value. The dashed line denoted by ω
(0)
I in figure 3 corresponds

to the first entry in table 1. As one can see this is the critical value approached by the

spectrum.

Now let us comment on the n = 1, 2 levels of the spectrum represented by the red

and green curves, respectively. As one can see the n = 1 spectrum becomes tachyonic

when we reach the third branch of the spiral (the vicinity of point H2 in figure 3) and

after that follows the same pattern as the n = 0 level, spiraling to the second entry ω
(1)
I

from table 1. The n = 2 level has a similar behavior, but it becomes tachyonic at the

next turn of the spiral and it approaches the next entry from table 1. Similar feature was

reported recently in [44] where the authors studied topology changing transitions. The

above analysis suggests that at each turn of the spiral, there is one new tachyonic state

appearing. It also suggests that the structure of the n-th level is similar to the structure

of the n + 1-th level and in the n → ∞ limit this similarity becomes an exact discrete

self-similarity. The last feature is apparent from the tachyonic sector of the diagram in

the second plot in figure 7, the blue, red and green curves are related by an approximate

scaling symmetry, the analysis of the spectrum of the critical L ≡ 0 embedding suggests

that this symmetry becomes exact in the n → ∞ limit with a scaling factor of q given in

equation (3.16).

It is interesting to analyze the way the meson mass M̃ approaches its critical value

and compute the corresponding critical exponent. Let us denote the critical value of M̃ by

M̃∗ and consider the bare quark mass m̃ as an order parameter, denoting its critical value
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Figure 7: A plot of the meson spectrum corresponding to the two arms of the spiral structure at

the origin of the (m̃,−c̃) plane. The ground state (n = 0) becomes tachyonic for the inner branches

of the spiral, while only the lowest branch is a tachyon free one. The tachyon sector of the diagram

reveals the self-similar structure of the spectrum.

by m̃∗. We are interested in calculating the critical exponent α defined by:

|M̃ − M̃∗| ∝ |m̃− m̃∗|α . (3.43)

We will provide a somewhat heuristic argument that α = 2 and will confirm this numeri-

cally. To begin with let us consider the energy density of the gauge theory Ẽ as a function

of the bare quark mass m̃. Now let us consider a state close to the critical one, characterized
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by:

M̃ = M̃∗ + δM̃ ; m̃ = m̃∗ + δm̃; Ẽ = Ẽ∗ + δẼ; . (3.44)

Next we assume that as we approach criticality the variation of Ẽ and M̃ are proportional

to the variation of the energy scale and hence δẼ ∝ δM̃ . Therefore we have:

δM̃

δm̃
∝ δẼ

δm̃
∝ c̃ , (3.45)

where c̃ is the fermionic condensate. The second relation in (3.45) was argued in [6]. In the

previous section we argued that the critical exponent of the condensate is one and since

the critical embedding has a zero condensate it follows that c̃ ∝ |m̃ − m̃∗|. Therefore we

have:
δM̃

δm̃
∝ α|m̃− m̃∗|α−1 ∝ |m̃− m̃∗| (3.46)

and hence α = 2.

Now let us go back to figure 7. As we discussed above, for each energy level n the

tachyonic spectrum spirals to the critical value ω
(n)
I , corresponding to the center of the

spiral. If we focus on the m̃ = 0 axis, we can see that for each level we have a tower of

tachyonic states at a zero bare quark mass, corresponding to the different branches of the

spiral. Let us denote by M̃
(n)
k the imaginary part of the meson spectrum, corresponding

to the k-th tachyonic state of the n-th energy level, at a zero bare quark mass m̃. As we

go deeper into the spiral, k → ∞ and M̃
(n)
k → M̃

(n)
∗ , the data in figure 7 suggests that

M̃
(n)
∗ = ω

(n)
I . On the other side if the meson spectrum has a critical exponent of two, one

can show that for a large k:

M̃
(n)
k − M̃

(n)
∗

M̃
(n)
k−1 − M̃

(n)
∗

= q2 , (3.47)

where q is given by equation (3.16). We can solve for M̃
(n)
∗ :

M̃
(n)
∗ = M̃k−1 +

M̃
(n)
k − M̃

(n)
k−1

1 − q2
. (3.48)

Now assuming that for k = 1, 2 the approximate geometrical series defined via (3.47)

is already exact we calculate numerically M̃
(n)
1 , M̃

(n)
2 for the n = 0, 1, 2 levels and compare

the value of M̃
(n)
∗ obtained by equation (3.48) to the first three entries in table 1. The

results are presented in table 2.

One can see that up to four significant digits the critical value of the meson spectrum is

given by the imaginary part of the quasi normal modes presented in table 1. This supports

the above argument that the meson spectrum has a critical exponent of two. Another way

to justify this, is to generate a plot of the meson spectrum similar to the one presented in

figure 4 for the bare quark mass m̃ and the fermionic spectrum c̃. Notice that M̃ approaches

criticality from above, while the parameter m̃ oscillates around the critical value m̃∗ = 0.

This suggests to use M̃ as an order parameter and to generate a plot of m̃/(M̃ − M̃∗)
2

vs.
√

2 log |M̃ − M̃∗|/2π. Note that according to equation (3.47) the plot should represent

periodic function of an unit period. The resulting plot for the n = 0 level, using M̃
(0)
∗ from

table 2 as a critical value, is presented in figure 8.
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n M̃
(n)
1 M̃

(n)
2 M̃

(n)
∗ ω

(n)
I

0 2.7530 × 10−1 2.6460 × 10−1 2.6447 × 10−1 2.6448 × 10−1

1 3.0162 × 10−2 2.8917 × 10−2 2.8902 × 10−2 2.8902 × 10−2

2 3.2715 × 10−3 3.1363 × 10−3 3.1347 × 10−3 3.1348 × 10−3

Table 2: Comparison between the critical value M̃
(n)
∗ for the n-th energy level of the meson

spectrum and the corresponding quasi-normal mode ω
(n)
I

of the critical embedding. The data

suggests that they match.
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Figure 8: A plot of the bare quark mass meson vs. the meson spectrum, in an appropriate

parameterization, determined by the critical exponents of m̃ and M̃ . The discrete self-similar

structure of the spectrum is manifested by the periodicity of the plotted function.

3.2.3 The stable branch of the spiral

In this subsection we consider the spectrum corresponding to the states far from the origin

of the (m̃,−c̃), which is the outermost branch of the spiral ending at pointH0 from figure 3.

The fluctuations of the D7-brane corresponding to the massless scalar φ were studied in [9]

and some features consistent with the spontaneous chiral symmetry breaking, such as a

characteristic
√
m behavior [51] were reported.

Here we complement the analysis by presenting the results for the fluctuations along the

L̃ coordinate. Since this is the massive field in the spontaneous chiral symmetry breaking

scenario, we expect a
√
const+ m̃ behavior of the meson spectrum for small values of m̃.

Note that such a behavior simply means that the spectrum of the L̃ fluctuations has a mass

gap at zero bare quark mass and that the slope of the spectrum vs. the bare quark mass

function is finite. It is satisfying that our results are in accord with this expectations.

To obtain the spectrum, we solve numerically equation (3.42) imposing Neumann

boundary conditions at ρ̃ = 0. A plot of the first five energy levels is presented in fig-

ure 9. As one can see at large m̃ the spectrum approximates that of the pure N = 2
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Figure 9: A plot of the meson spectrum corresponding to the stable branch of the spiral. The

black dashed lines correspond to equation (3.50), one can see that for large m̃ the meson spectrum

asymptotes to the result for pure AdS5 × S5 space. One can also see that at zero bare quark mass

m̃ there is a mass gap in the spectrum.

Flavored Yang Mills theory studied in [3], where the dependence of the meson spectrum

on the bare quark mass was obtained in a closed form:

M0 =
2m

R2

√

(n+ l + 1)(n + l + 2) . (3.49)

Here l is the quantum number corresponding to the angular modes along the internal S3

sphere wrapped by the D7 brane and is zero in our case. After introducing the dimensionless

variables defined in (3.41), equation (3.49) boils down to:

M̃0 = 2
√

(n + 1)(n + 2)m̃ . (3.50)

The black dashed lines in figure 9 represent equation (3.50). The fact that the meson

spectrum asymptotes to the one described by (3.50) justifies the use of the quantum number

n to classify the meson spectrum. One can also see that as expected the spectrum at zero

bare quark mass has a mass gap.

4. Conclusion

In this paper we performed a detailed analysis of the spiral structure at the origin of the

condensate vs. bare quark mass diagram. We revealed the discrete self-similar behavior of

the theory near criticality and calculated the corresponding critical exponents for the bare

quark mass, the fermionic condensate and the meson spectrum.

– 20 –



J
H
E
P
0
4
(
2
0
0
8
)
0
8
8

Our study of the meson spectrum confirmed the expectations based on thermodynamic

considerations that the lowest positive m̃ branch of the spiral corresponds to a stable phase

of the theory and that the inner branches are real instabilities characterized by a tachyonic

ground state and cannot be reached by a supercooling. The lowest negative m̃ branch of

the spiral is tachyon free and thus could be metastable.

The supercooling mentioned above could be attempted by considering the finite tem-

perature background, namely the AdS Black hole geometry, in the presence of an external

magnetic field. We could prepare the system in the phase corresponding to the trivial

L̃ ≡ 0 embedding and then take the T → 0 limit. If some of the inner branches of the

spiral were metastable the theory could end up in the corresponding phase. The study of

the finite temperature case is of a particular interest. Due to the additional scale intro-

duced by the temperature, the theory has two dimensionless parameters and is described

by a two dimensional phase diagram. The effect of the temperature is to restore the chiral

symmetry and is competing with that of the external magnetic field. On the other side the

magnetic field affects the melting of the mesons [50].
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A. Calculating the condensate of the theory

Let us consider the on-shell action:

S = −2π2τ7Nf

ρmax
∫

0

dρρ3

√

1 +
R4H2

ρ2 + L(ρ)2

√

1 + L′(ρ)2 (A.1)

it diverges as ρmax → ∞. To rectify this we regularize the action by subtracting the action

for the L ≡ 0 embedding:

Ssub

2π2τ7Nf
= −

ρmax
∫

0

dρρ3

√

1 +
R4H2

ρ4

1

4
ρ2
max

√

ρ4
max +R4H2 + (A.2)

+
1

4
R4H2 ln

(

ρ2
max +

√

R4H2 + ρ4
max

R2H

)

This results to the following regularized action:

Sreg[L, ρmax] = S − Ssub (A.3)

On the other-side the hamiltonian density of the theory can be written as [6]:

H =

∫

d2θmqQ̃Q+ H0 , (A.4)
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where H0 is the mass independent part of the hamiltonian and Q, Q̃ are the two chiral

fields of the hypermultiplet in N = 1 notations. Now by making the identification:

〈H〉 = − lim
ρmax→∞

Sreg (A.5)

and using equations (A.1)–(A.3) and the asymptotic of L(ρ) as ρmax → ∞:

L(ρ) = m+
c

ρ2
max

+ . . . , (A.6)

we can obtain:

〈 δH
δmq

〉 = 〈ψ̄ψ〉 = −2πα′ lim
ρmax→∞

δSreg

δL
(A.7)

= lim
ρmax→∞

4π3α′τ7Nfρ
3
maxL

′(ρmax) = −8π3α′τ7Nfc .

And hence we finally get:

〈ψ̄ψ〉 = − Nf

(2πα′)3g2
YM

c (A.8)
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[38] R. Apreda, J. Erdmenger, D. Lüst and C. Sieg, Adding flavour to the Polchinski-Strassler

background, JHEP 01 (2007) 079 [hep-th/0610276].

[39] S. Nakamura, Y. Seo, S.-J. Sin and K.P. Yogendran, A new phase at finite quark density from

AdS/CFT, hep-th/0611021.

[40] S. Kobayashi, D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase

transitions at finite baryon density, JHEP 02 (2007) 016 [hep-th/0611099].

[41] N. Evans, Holographic QCD and perfection, hep-ph/0701218.

[42] C. Hoyos-Badajoz, K. Landsteiner and S. Montero, Holographic meson melting, JHEP 04

(2007) 031 [hep-th/0612169].

[43] A. Buchel, S. Deakin, P. Kerner and J.T. Liu, Thermodynamics of the N = 2∗ strongly

coupled plasma, Nucl. Phys. B 784 (2007) 72 [hep-th/0701142].

[44] D. Mateos, R.C. Myers and R.M. Thomson, Thermodynamics of the brane, JHEP 05 (2007)

067 [hep-th/0701132].

[45] J. Erdmenger, M. Kaminski and F. Rust, Isospin diffusion in thermal AdS/CFT with flavor,

Phys. Rev. D 76 (2007) 046001 [arXiv:0704.1290].

[46] J. Erdmenger, R. Meyer and J.P. Shock, AdS/CFT with flavour in electric and magnetic

Kalb-Ramond fields, JHEP 12 (2007) 091 [arXiv:0709.1551].

[47] T. Albash, V.G. Filev, C.V. Johnson and A. Kundu, Finite temperature large-N gauge theory

with quarks in an external magnetic field, arXiv:0709.1547.

[48] A. Karch and A. O’Bannon, Metallic AdS/CFT, JHEP 09 (2007) 024 [arXiv:0705.3870].

[49] R.C. Myers, A.O. Starinets and R.M. Thomson, Holographic spectral functions and diffusion

constants for fundamental matter, JHEP 11 (2007) 091 [arXiv:0706.0162].

[50] T. Albash, V.G. Filev, C.V. Johnson and A. Kundu, Finite temperature large-N gauge theory

with quarks in an external magnetic field, arXiv:0709.1547.

– 24 –

http://jhep.sissa.it/stdsearch?paper=09%282006%29052
http://arxiv.org/abs/hep-th/0607205
http://jhep.sissa.it/stdsearch?paper=09%282006%29032
http://jhep.sissa.it/stdsearch?paper=09%282006%29032
http://arxiv.org/abs/hep-th/0605191
http://jhep.sissa.it/stdsearch?paper=07%282006%29013
http://arxiv.org/abs/hep-th/0605158
http://jhep.sissa.it/stdsearch?paper=08%282006%29018
http://arxiv.org/abs/hep-th/0605138
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C085033
http://arxiv.org/abs/hep-th/0605120
http://jhep.sissa.it/stdsearch?paper=01%282007%29072
http://jhep.sissa.it/stdsearch?paper=01%282007%29072
http://arxiv.org/abs/hep-th/0608198
http://jhep.sissa.it/stdsearch?paper=10%282006%29055
http://arxiv.org/abs/hep-th/0607178
http://jhep.sissa.it/stdsearch?paper=01%282007%29079
http://arxiv.org/abs/hep-th/0610276
http://arxiv.org/abs/hep-th/0611021
http://jhep.sissa.it/stdsearch?paper=02%282007%29016
http://arxiv.org/abs/hep-th/0611099
http://arxiv.org/abs/hep-ph/0701218
http://jhep.sissa.it/stdsearch?paper=04%282007%29031
http://jhep.sissa.it/stdsearch?paper=04%282007%29031
http://arxiv.org/abs/hep-th/0612169
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB784%2C72
http://arxiv.org/abs/hep-th/0701142
http://jhep.sissa.it/stdsearch?paper=05%282007%29067
http://jhep.sissa.it/stdsearch?paper=05%282007%29067
http://arxiv.org/abs/hep-th/0701132
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C046001
http://arxiv.org/abs/0704.1290
http://jhep.sissa.it/stdsearch?paper=12%282007%29091
http://arxiv.org/abs/0709.1551
http://arxiv.org/abs/0709.1547
http://jhep.sissa.it/stdsearch?paper=09%282007%29024
http://arxiv.org/abs/0705.3870
http://jhep.sissa.it/stdsearch?paper=11%282007%29091
http://arxiv.org/abs/0706.0162
http://arxiv.org/abs/0709.1547


J
H
E
P
0
4
(
2
0
0
8
)
0
8
8

[51] M. Gell-Mann, R.J. Oakes and B. Renner, Behavior of current divergences under

SU(3) × SU(3), Phys. Rev. 175 (1968) 2195.

[52] C.V. Johnson, D-Branes, Cambridge University Press, Cambridge U.K. (2003).

– 25 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2C175%2C2195

